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ABSTRACT

Aim There is a wealth of information on species occurrences in biodiversity

data banks, albeit presence-only, biased and scarce at fine resolutions. More-

over, fine-resolution species maps are required in biodiversity conservation.

New techniques for dealing with this kind of data have been reported to per-

form well. These fine-resolution maps would be more robust if they could

explain data at coarser resolutions at which species distributions are well repre-

sented. We present a new methodology for testing this hypothesis and apply it

to invasive alien species (IAS).

Location Catalonia, Spain.

Methods We used species presence records from the Biodiversity data bank of

Catalonia to model the distribution of ten IAS which, according to some recent

studies, achieve their maximum distribution in the study area. To overcome

problems inherent with the data, we prepared different correction treatments:

three for dealing with bias and five for autocorrelation. We used the MaxEnt

algorithm to generate models at 1-km resolution for each species and treat-

ment. Acceptable models were upscaled to 10 km and validated against inde-

pendent 10 km occurrence data.

Results Of a total of 150 models, 20 gave acceptable results at 1-km resolution

and 12 passed the cross-scale validation test. No apparent pattern emerged,

which could serve as a guide on modelling. Only four species gave models that

also explained the distribution at the coarser scale.

Main conclusions Although some techniques may apparently deliver good dis-

tribution maps for species with scarce and biased data, they need to be taken

with caution. When good independent data at a coarser scale are available,

cross-scale validation can help to produce more reliable and robust maps.

When no independent data are available for validation, however, new data

gathering field surveys may be the only option if reliable fine-scale resolution

maps are needed.

Keywords

Biodiversity databases, Catalonia, cross-scale validation, invasive alien species,

MaxEnt, species distribution models.

INTRODUCTION

For centuries, species occurrences have been recorded in an

ad hoc way by natural historians, museums, scientists and

the like in the form of museum specimens, site inventories,

citations in technical and scientific literature, etc. (Chapman

& Busby, 1994; Chapman, 2005). In the last three decades,

both governments and non-governmental organizations have

invested considerable financial resources on the digitizing of

these data into digital species distribution atlases and making

them publicly available. Ideally, they should offer reliable

high-quality digital data, which withstand public, scientific

DOI: 10.1111/j.1472-4642.2012.00911.x
ª 2012 Blackwell Publishing Ltd http://wileyonlinelibrary.com/journal/ddi 1

Diversity and Distributions, (Diversity Distrib.) (2012) 1–13
A

 J
ou

rn
al

 o
f 

Co
ns

er
va

ti
on

 B
io

ge
og

ra
ph

y
D

iv
er

si
ty

 a
nd

 D
is

tr
ib

ut
io

ns



and legal scrutiny (Robertson et al., 2010). Such databases

represent a wealth of information on species distribution and

an indispensable asset for science and conservation (Funk &

Richardson, 2002; Graham et al., 2004; Suarez & Tsutsui,

2004; Franklin, 2009; Robertson et al., 2010). However, as

these data usually come from opportunistic or ad hoc sources

rather than well-planned surveys, they present some impor-

tant drawbacks: they are presence-only in nature, are highly

biased (not representing a random sample) and may show

spatial aggregation derived from sampling biases. Also,

because they are laboriously compiled from analogue sources,

they are difficult and costly to georeference, and hence, coar-

ser resolutions tend to dominate (Margules & Pressey, 2000;

Pressey, 2004). As a result, most data in these biodiversity

databases are often too coarse for use in conservation plan-

ning and management, where fine-grained maps (i.e. 1 km

or better) are needed (McPherson et al., 2006; Guralnick &

Hill, 2009; Niamir et al., 2011).

Planned systematic surveys of species presence, absence

and abundance could provide the most precise, accurate and

unbiased information on the spatial distribution of biodiver-

sity. However, such surveys are expensive to conduct for

large regions, even for a single species (Robertson et al.,

2010). Given the current accelerated trend in world-wide

biodiversity loss and the urge for addressing conservation

problems, it becomes of utmost importance to find ways and

methodologies to make the best use of this existing informa-

tion (Newbold, 2010; Venette et al., 2010).

Such databases or atlases of species occurrences still repre-

sent a largely untapped potential of information that can

play an important role in conservation biogeography (Elith

& Leathwick, 2009; Richardson & Whittaker, 2010; Elith

et al., 2011). Methods for dealing with biases and evaluating

results need more development. Fortunately, in the last few

years, the community of species distribution modelling has

witnessed the appearance of new tools and methodologies

from the fields of statistics and artificial intelligence which

have the potential to address the problems inherent in these

data. Some of these tools, if used properly (Segurado et al.,

2006; Pearson et al., 2007; Phillips et al., 2008; Elith et al.,

2011), can handle presence-only data even when only few

occurrences are available, and provided attention is given to

problems such as bias and autocorrelation (Elith et al.,

2011). Despite that, in presence-only models, the lack of

absence data compromises the model reliability (Aranda &

Lobo, 2011) and that, some issues have been raised concern-

ing the maximum entropy technique [e.g. (Peterson et al.,

2007, 2008)], it has been judged among the best performers

in distribution modelling for such kind of data (Elith et al.,

2006) and is still widely used by the research community.

In many cases, applying these novel techniques to the

scarce fine-resolution data can yield distribution maps with

high validation scores. The question is whether we can take

advantage of coarser data, which are relatively abundant and

for some regions close to the species true distribution, to

further validate these maps and assess their reliability.

Having models that explain data at fine resolutions while

being consistent with coarser resolution data is important

(McPherson et al., 2006; Vallecillo et al., 2009; Niamir et al.,

2011) as it can yield more robust and reliable distribution

maps for conservation. The existence of databases with such

information provides an opportunity to test this hypothesis.

A specially relevant piece of information for conservation,

which can potentially be derived from these costly data

banks, is current and historical distributions of invasive alien

species (IAS).

The spread of IAS, driven mainly by human activities, is

increasing worldwide (Butchart et al., 2010) and poses

potential problems not only to native biodiversity but also to

economic development and human well-being (Vitousek

et al., 1997; Taylor & Irwin, 2004; Pimentel et al., 2005;

Chytrý et al., 2009; Pejchar & Mooney, 2009; Pyšek et al.,

2010; Vilà et al., 2011). Having risk maps representing the

potential distribution of IAS is a necessary step towards

effective management (Richardson & Whittaker, 2010;

Jiménez-Valverde et al., 2011). Using all information in

species inventories and atlases, coarse and fine-resolution

records, is essential for maximizing limited financial

resources (Nielsen et al., 2008).

We test whether fine-resolution maps of IAS can be

obtained from existing biodiversity databases that are robust

enough to explain occurrences at different scales held in the

database. By using a probabilistic upscaling methodology, we

translate 1-km resolution maps into 10-km resolution maps

that are then used to further validate the models against

well-known distributions at the coarser scale. With this

approach, each model is evaluated with data at its own reso-

lution. We use different bias and autocorrelation treatments

to deal with problems inherent in the finer resolution data.

Results suggest that, despite current modelling methodolo-

gies can deliver good fine-resolution models, these models

cannot always explain well-known distributions at coarser

scales.

METHODS

Area of study

Catalonia is a region of around 32,000 km2 located in the

northeastern part of the Iberian Peninsula (Fig. 1). It ranges

in elevation from 0 to over 3000 m.a.s.l, from the Mediterra-

nean coast up to the Pyrenees. Its environmental conditions

are highly variable because of its location and complex

topography. Although dominated by the Mediterranean cli-

mate, it also has continental and Atlantic influences. Medi-

terranean and Eurosiberian biogeographic regions dominate,

while Subalpine and Alpine types appear in the upper zones

of the Pyrenees. There is a trend of decreasing precipitation

and increasing temperature towards the south (Ninyerola

et al., 2000). It is a highly populated region, particularly

around the Barcelona metropolitan area. The rest of the

region is dominated by forests and agroforestry mosaics with
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relatively large human influence although with lower inten-

sity.

Database

As a case study, we used the Biodiversity Databank of Cata-

lonia (BDBC, http://biodiver.bio.ub.es/biocat/) (Font et al.,

2009). Catalonia is a region with a rich history in Botany

which is reflected in the holdings of the database. For an

area of around 32,000 km2, the BDBC contains more than

1.5 million plant species citations from sources such as scien-

tific articles, PhD theses and local floras. Most of its data are

at a coarse resolution of 10 km for historical reasons – the

recording tradition among botanists and the fact that, before

the use of GPS, manually recording occurrences at finer reso-

lutions was a time-consuming process. Catalonia is a well-

surveyed region for vascular plants at 10-km resolution. The

BDBC contains also more than 180,000 plant occurrence

records at 1-km resolution. The geographical distribution of

IAS as reflected by 10-km resolution occurrence records in

the BDBC can be considered to approximate its true distri-

bution for our study area (Pino et al., 2005). Therefore,

when developing models at finer resolutions, their geo-

graphic distribution should be coherent with the distribution

obtained from mapping the coarser data.

Species data

IAS may violate the assumption made in species distribution

modelling that species have had the opportunity to realize

their full potential range (Austin, 2002; Araújo & Pearson,

2005; Peterson, 2005; De Marco et al., 2008; Zimmermann

et al., 2010; Vàclavı́k & Meentemeyer, 2012). According to

some studies (Williamson et al., 2009; Gassó et al., 2010),

neophytes reach their maximum range around 150 years

after their introduction into the Iberian Peninsula. The 150-

year period was hence taken as the main criterion for species

selection, together with the availability of data at 1-km reso-

lution. The 10 species selected are presented in Table 1. Four

of them are considered to be highly invasive in Europe

(DAISIE European Invasive Alien Species Gateway, 2011):

Ailanthus altissima, Opuntia ficus-indica, Oxalis pes-caprae

and Robinia pseudoacacia. See Appendix S1 in Supporting

Information for maps of occurrences for each species.

Data independence across scales

Occurrence data at different resolutions in biodiversity

atlases may not be independent; that is, occurrence records

at coarser resolutions may have their origin in records at

finer resolutions. To overcome this difficulty, we only

Figure 1 Study area.

Table 1 List of invasive alien species selected for modelling

Species Abbr 1 km 10 km Intr Yrs

Agave Americana L. aga 20 124 XVIth 411

Ailanthus altissima (P.Mill)

Swingle

aia 43 213 1818 192

Amaranthus albus L. ama 29 194 1861 149

Conyza Canadensis (L.)

Cronquist

coc 73 307 1784 226

Datura stramonium L. das 31 230 XVIth 411

Oenothera biennis L. oeb 55 80 1848 162

Opuntia ficus-indica (L.)

Mill.

opf 13 102 XVIth 411

Oxalis pes-caprae L. oxp 12 41 1850 160

Robinia pseudoacacia L. rop 66 257 XVIIIth 211

Xanthium spinosum L. xas 56 252 XVIIIth 211

Abbr, species abbreviation; 1 km, number of 1 km occurrences;

10 km, number of 10 km occurrences; Intr, introduction date; Yrs,

number of years since introduction (conservative estimate).

Diversity and Distributions, 1–13, ª 2012 Blackwell Publishing Ltd 3
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accepted 10 km squares which had at least one citation more

per species than the sum of citations for the one hundred

1 km squares contained within the 10 km square; that is,

there is at least one 10 km occurrence record which is inde-

pendent from 1 km data. This procedure also allowed us to

use all occurrences records at 1-km resolution.

Environmental data

We used 19 bioclimatic variables (Nix, 1986) (Table 2) that

represent a combination of annual trends, seasonality and

extreme conditions relevant to species physiological toler-

ances. We added two more variables regarding radiation

(mean radiation of the least radiated quarter and mean radi-

ation of the most radiated quarter) and three more variables

that may partially explain the distribution of IAS (distance

to main harbours, distance to the coast and degree of

anthropization) (Brooks, 2007; Vicente et al., 2010) (See

Table 2). We calculated the bioclimatic variables using the

Digital Climatic Atlas of Catalonia (DCAC) (Ninyerola et al.,

2000) that holds monthly data on temperature, precipitation

and radiation for the whole of Catalonia. We calculated the

degree of anthropization using the Land Cover Map of

Catalonia (CREAF – Centre for Ecological Research &

Forestry Applications, 2009; Ibáñez & Burriel, 2010). Each

land cover category was assigned a value ranging from one

(least anthropization) to five (most anthropization)

(Table 2). Then, to represent the degree of anthropization,

we calculated a weighted average scaled between 0 and 100

for each 1 km square grid.

As our goal is to predict species distributions rather than

to understand which factors affect their distribution, all

predictors were used for modelling each species. Extracting

collinearity from the model was not necessary. Although

collinearity can hinder the explanation of which variables

affect species distribution, it does not affect MaxEnt predic-

tive performance (Kuemmerle et al., 2010).

Species distribution modelling

Modelling involved a five-step process as shown in Fig. 2. In

the first step, we modelled the species distribution at the

finer resolution of 1 km following the methodology

described in Case 1 of Elith et al., (2011). These authors use

different alternative background scenarios to account for

bias, and cross-validation techniques to validate models

developed with presence-only data of Banksia prionotes from

an atlas database. Accounting for bias and autocorrelation is

an important issue in species distribution modelling, espe-

cially in presence-only models (Legendre, 1993; Legendre

et al., 2002; Segurado et al., 2006; Phillips et al., 2009; New-

bold, 2010; Merckx et al., 2011). As we expect fine-grained

casually collected data to show a number of biases, we

included three bias correction treatments and five spatial

autocorrelation (SAC) correction treatments (see below) to

evaluate the potential of these data to derive ecologically

sound species distribution models.

This resulted in a total of 15 models per species. In a sec-

ond step, only those models with an AUC (area under the

curve) � 0.7 not showing residual SAC were selected. In a

third step, these selected models were upscaled to a coarser

resolution of 10 km using a probabilistic model (see equa-

tion later). In step four, upscaled models were validated

against the independent 10 km data set and only those with

an AUC � 0.7 at 10-km resolution (AUC10K) were selected.

Therefore, the 1-km resolution models which, once upscaled,

resulted in these selected 10 km models are the only ones

which showed acceptable predictions at both scales. Finally,

in step five, if more than one fine-scale model per species

had been selected, we determined the best one by selecting

that with the highest AUC at 1-km resolution (AUC1K).

Despite concerns about the use of AUC to compare species

distribution models, this metric can safely be applied when

evaluating model performance within species (Lobo et al.,

2008; Blach-Overgaard et al., 2010) and when interpreting it

as a measure of discrimination between presence and back-

ground rather than presence and absence (Phillips et al.,

2006; Phillips & Dudı́k, 2008).

Table 2 Set of environmental predictors used in modelling

Bioclimatic variables

Annual mean temperature

Minimum temperature of the coldest month

Mean temperature of the coldest year quarter

Mean temperature of the warmest year quarter

Mean temperature of the wettest year quarter

Mean temperature of the driest year quarter

Maximum temperature of the warmest month

Annual mean precipitation

Precipitation of the coldest year quarter

Precipitation of the driest month

Precipitation of the driest year quarter

Precipitation of the warmest year quarter

Precipitation of the wettest month

Precipitation of the wettest year quarter

Annual temperature range

Mean temperature diurnal range

Isothermality

Temperature seasonality

Precipitation seasonality

Mean solar radiation of the least radiated quarter

Mean solar radiation of the most radiated quarter

Landscape and physical variables

Anthropization degree

1 – Natural forests, shrublands, wetlands, grasslands, rock

outcrops and screens, bare soil, beaches, glaciers and snow

cover and continental waters, 2 – recently burnt areas

and reforestations, 3 – crops and tree plantations,

4 – agricultural water bodies and quarrying areas,

5 – dense and sparse urban areas and roads

Distance to coast

Distance to closest harbour
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Figure 2 Outline for the proposed modelling workflow. Step one corresponds to the modelling of each species at 1-km resolution with

three different bias treatments and five different autocorrelation treatments, which gives a total of 15 models per species. In step two, we

check for residual autocorrelation, calculate the AUC and select only those models with no residual spatial autocorrelation and with an

AUC � 0.7. In step three, previously selected models are upscaled to 10-km resolution by probabilistic calculations. In step four, a

ROC analysis is performed using independent data at 10-km resolution. Models with an AUC � 0.7 tell us which models at 1-km

resolution are accepted. Finally, in step five, if more than one model per species at 1-km resolution has been accepted, we define the

best model as the one which has the maximum AUC1K.

Diversity and Distributions, 1–13, ª 2012 Blackwell Publishing Ltd 5

IAS model reconciliation across scales



Bias correction treatments

Background samples should be chosen to reflect the spatial

bias and thus to minimize the effects of bias in the data

(Phillips et al., 2009; Veloz, 2009; Elith et al., 2011). We pre-

pared three different background scenarios: (a) the entire

study area (coded as ‘whole_area’), (b) 1 km squares with

the presence of vascular plants citations (about 14.0% of the

whole area, coded as ‘vasculars1k’) and (c) 1 km squares

with the presence of IAS citations (about 2.3% of the whole

area, coded as ‘invasive1k’). See Table 3.

Autocorrelation correction treatments

SAC may falsely inflate AUC measures for species distribu-

tion models with presence-only data (Segurado et al., 2006;

Veloz, 2009) and environmental autocorrelation may have

the same effects. There is no established methodology for

accounting for SAC when dealing with presence-only data

(Dormann et al., 2007; Elith & Leathwick, 2009). Autoregres-

sive models are not applicable because both presence and

absence data would be needed (Allouche et al., 2008). We

took an a priori approach similar to (Segurado et al., 2006;

Pearson et al., 2007) which consisted in filtering occurrences

by setting a minimum spatial and environmental distance

between them and then checking for residual autocorrelation.

We prepared five treatments for modelling each species. The

first involved including all available presences without filter-

ing them. The second and third involved randomly filtering

and selecting occurrences so that any occurrence was at least

at a spatial distance of 2830 m (two 1 km squares) and

4250 m (three 1 km squares) from each other, respectively.

For the fourth and fifth treatment, we used a minimum mul-

tivariate environmental distance based on the Gower’s dis-

tance index with values 0.05 and 0.1, respectively (higher

values resulted in an excessive reduction in occurrences).

Models were then checked for significant residual autocorre-

lation [observed occurrence minus probability of occurrence

as in (De Marco et al., 2008; Nuñez & Medley, 2011;

Vàclavı́k & Meentemeyer, 2012)] by using Monte-Carlo

simulation of Moran’s I autocorrelation coefficient using

package spdep in R (Bivand, 2011). Only those models with

a P-value � 0.05 were accepted (as shown in Table 3).

Modelling and validation at 1-km resolution

We used MaxEnt software, version 3.3.3e, (Phillips et al.,

2006; Phillips & Dudı́k, 2008). MaxEnt is a presence-back-

ground modelling tool based on the maximum entropy prin-

ciple. There is wide agreement in the species distribution

modelling community that it is the best available tool for

presence-only data, even when only a limited number of

Table 3 Models with AUC1K � 0.7 and no residual spatial autocorrelation at 1 km. Finally accepted models (AUC10K at 10 km

with � 0.7) at 10-km resolution are indicated with a Y in column ‘Accepted’. In column ‘Best’, those with the highest AUC1K at 1 km

from the accepted models are marked with an asterisk.

Sp Bias tr. Aut. type Min. dist. AUC1k M P-value AUC10k Accepted Best

aga whole_area Spatial 4250 m 0.79 0.064 0.86 Y *

aga vasculars1k Spatial 4250 m 0.75 0.066 0.78 Y

aia invasive1k Spatial 2830 m 0.82 0.052 0.50 N

aia vasculars1k Spatial 2830 m 0.78 0.076 0.65 N

aia invasive1k Spatial 4250 m 0.72 0.164 0.45 N

aia vasculars1k Spatial 4250 m 0.72 0.124 0.67 N

oeb invasive1k Environmental 0.10 0.75 0.086 0.57 N

opf whole_area Environmental 0.10 0.87 0.074 0.85 Y

opf whole_area Spatial 2830 m 0.87 0.072 0.85 Y *

opf vasculars1k Spatial 2830 m 0.80 0.054 0.82 Y

opf whole_area Spatial 4250 m 0.86 0.076 0.86 Y

oxp whole_area Environmental 0.10 0.92 0.172 0.92 Y

oxp invasive1k Environmental 0.10 0.70 0.078 0.78 Y

oxp vasculars1k Environmental 0.10 0.87 0.136 0.89 Y

oxp whole_area Spatial 0.00 0.94 0.054 0.93 Y *

oxp vasculars1k Spatial 2830 m 0.86 0.056 0.90 Y

rop invasive1k Environmental 0.05 0.83 0.252 0.52 N

rop invasive1k Environmental 0.10 0.81 0.405 0.53 N

xas vasculars1k Environmental 0.05 0.75 0.150 0.69 N

xas vasculars1k Environmental 0.10 0.76 0.577 0.70 Y *

Sp, species abbreviation; Bias tr., bias treatment (whole_area, whole study area as background; vasculars1k, UTM squares with citations of vascular

plants as background; invasive1k, UTM squares with citations of invasive plants as background), Aut. Type, autocorrelation treatment type (spa-

tial, based on spatial distance; environmental, based on environmental distance), Min. dist., autocorrelation minimum distance value; AUC1K,

AUC value for 1 km models; M P-value, Moran’s I P-value from Monte-Carlo simulation; AUC10K, AUC value for 10 km models; Accepted,

models accepted; Best, overall best models.
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occurrence records are available (Elith et al., 2006;

Hernandez et al., 2006; Phillips & Dudı́k, 2008; Wisz et al.,

2008; Elith & Graham, 2009; Thorn et al., 2009; Costa et al.,

2010) and with bias present (Rebelo & Jones, 2010). MaxEnt

estimates the distribution of maximum entropy constrained

in a way that expected values for predictor variables match

their empirical average (Phillips et al., 2006). We used the

logistic output of the model that indicates the relative envi-

ronmental suitability of each pixel in relation to background

for the study area (Phillips et al., 2006; Phillips & Dudı́k,

2008).

We ran the model for each species with default options

using the whole set of environmental predictors (Table 2)

and following the methodology explained in Case 1 of Elith

et al., 2011. A total of 150 models were generated, which cor-

respond to ten species times three bias scenarios times five

autocorrelation correction treatments. When dealing with

data from atlas databases, randomly partitioning occurrence

data into training and test sets and using cross-validation

techniques is often the only solution available to calibrate and

test a model. We used 10-fold cross-validation and then used

the average of all models as the final one. As a goodness-of-fit

measure, we used the test AUC. As it is usually the norm in

species distribution modelling, we accepted only models with

an AUC � 0.7. Models with an AUC � 0.9 are considered

excellent (Swets, 1988). As mentioned earlier, we only

accepted models with no residual autocorrelation as tested by

Moran’s I autocorrelation coefficient.

Upscaling and validation at a coarser scale

We assumed that habitat quality is related to probability of

presence and upscaled each accepted model at 1-km resolu-

tion (AUC1K � 0.7 and no residual SAC) to 10-km resolu-

tion by a basic calculation of probabilities (see equation

below). We computed the probability of presence for each ith
10 km square of the study area (P10km, i), given the predicted
probability of presence for each 1 km square contained within
it (P1km, j). If we subtract this probability from 1, we obtain
the probability of absence for this jth 1 km square. For a
given ith 10 km square to have an absence, all of its one hun-
dred 1 km squares need also to be absences. Therefore, by
multiplying the probabilities of absence for each jth 1 km
square, we get the probability of absence for the ith 10 km
square. Finally, by subtracting the probability of absence for
an ith 10 km square from 1, we get its probability of presence
(P10km,i).

8i;P10km;i ¼ 1�
Y100

j¼1

ð1� p1km;jÞ

We then performed a receiver operating characteristic

(ROC) analysis [ROCR package in R (Sing et al., 2009)] and

computed the AUC10K value for each upscaled 10 km model

using the independent data set at 10-km resolution. To

ensure accurate prediction assessment, independent test sets

should be available (Loiselle et al., 2008; Veloz, 2009). Again,

those models with an AUC10K value � 0.7 were accepted.

Finally, of all models accepted for each species, we selected

the one with the highest AUC1K value at 1-km resolution as

the best one. In summary, we obtained a set of distribution

maps that perform well at the finer resolution and that also

acceptably predict independent records at the coarser resolu-

tion. We think these models can be considered robust and

reliable given the data available.

RESULTS

Overall, AUC test values at 1-km resolution (AUC1K) ranged

from as low as 0.37 to as high as 0.96 (including models with

residual autocorrelation), while their corresponding upscaled

models at 10-km resolution ranged from 0.45 to 0.93

(Table 3). Of 150 models, 101 (67%) had an AUC1K � 0.7.

Of these, only 20 showed no significant residual SAC

(Moran’s P-value from Monte-Carlo simulation � 0.05).

The 20 that performed well at 1-km resolution are shown in

Table 3. AUC1K test values for the accepted 20 models ranged

from 0.7 to 0.94 and correspond to seven of the ten modelled

species. The other three, Amaranthus albus, Conyza canadensis

and Datura stramonium, did not perform well when model-

ling at 1-km resolution. Oxalis pes-caprae had the highest

number of acceptable models at 1-km resolution but, never-

theless, unacceptable models predominated (10 of 15). The

rest had between 11 and 14 unacceptable models. The worst

models, those with an AUC1K � 0.5, were four models of

Amaranthus albus and one of Datura stramonium. All of these

models used the invasive1k bias treatment.

When evaluating the performance at 10-km resolution, 12

of these final 20 models (60%) had an AUC10K � 0.7 and

were considered acceptable distribution models given the

data available (see Table 3). Models marked with an asterisk

correspond to our best models (see Table 3 and Fig. 3); that

is, those with the maximum AUC1K value, when more than

one model per species was accepted.

Half of the 12 models finally accepted required no bias

treatment, while the other half performed better when a bias

treatment was applied, although only one of them showed

preference for the background offered by IAS citation areas.

With respect to autocorrelation treatment, six performed

better with some sort of SAC correction, while five did so

with environmental autocorrelation correction. One model

needed no autocorrelation correction, while none seemed to

prefer the environmental correction with the shortest dis-

tance, and finally, only one model did not need either bias

or autocorrelation treatment, which corresponded to Oxalis

pes-caprae. This model also coincides with the best one of

all, although care should be taken when comparing AUC val-

ues between species (Lobo et al., 2008; Blach-Overgaard

et al., 2010). See Table 4 for a summary.

Three species, Ailanthus altissima, Oenothera biennis and

Robinia pseudoacacia, did not pass the cross-scale validation

cut (see Table 3). They had models that were acceptable at
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1-km resolution but which, once scaled, did not offer accept-

able predictive power at 10 km. Thus, their finer resolution

models were discarded as not robust enough: that is, they

could not explain the independent data set at 10-km resolu-

tion. As an example, Fig. 4 shows two models that, while

having passed the cut at 1-km resolution modelling, show an

AUC10K around 0.5 that is not better than random.

On a per species basis, Agave americana performed well

under the whole_area and vasculars1k bias treatments and for

SAC correction with a minimum distance of 4250 m. Its best

model was the one with the bias treatment whole_area.

Opuntia ficus-indica performed well under whole_area and

vasculars1k bias treatments and under both environmental

and spatial occurrence filtering, its best model being the one

with the whole_area bias treatment and a SAC correction

with a minimum distance of 2830 m. Oxalis pes-caprae per-

formed well under all three bias treatments and under both

spatial and environmental autocorrelation correction. Its best

model required no bias or autocorrelation treatment at all.

Finally, for Xanthium spinosum, the only successful treatment

was the vasculars1k bias treatment and the environmental

autocorrelation correction with a minimum distance of 0.1.

Reductions in the number of available occurrences after

autocorrelation correction for the final four best models were

(a) (b)

Figure 4 Examples of models that did not work. Even though these two models had a high AUC1K value and showed no residual

autocorrelation, they had an AUC10K close to 0.5 and are thus not better than random. Legend scale ranges from 1.0 (maximum

suitability) to 0.0 (no suitability). Black empty squares represent records of presence at 10-km resolution.

(a) (b)

(c) (d)

Figure 3 Best models per species among all the accepted models. Only four species resulted in finally valid models at 1-km resolution.

For these species, those shown in the figure are the ones with max (AUC1K). Legend scale ranges from 1.0 (maximum suitability) to 0.0

(no suitability). Black empty squares represent records of presence at 10-km resolution.
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as follows: Agave americana from 20 to 12, Opuntia ficus-

indica from 13 to 10, Xanthium spinosum from 56 to 22 and

no reduction for Oxalis pes-caprae because its best model

was the one without autocorrelation correction.

Table 4 presents a summary of accepted and discarded

models according to treatments. For SAC treatments, the

option of no treatment was the worst (93.3% of these mod-

els showed residual SAC), while the best was the treatment

corresponding to an environmental distance (Gower’s index)

of 0.1 (less than half (43.3%) of the models showed residual

SAC). The rest of SAC treatments had similar results: only a

quarter to a fifth of the models showed no residual SAC. For

bias treatments, using some kind of treatment worked better

(68% for invasive1k and 64% for vasculars1k) than no treat-

ment (86%). The best treatments for removing residual SAC

were the combination of an environmental distance of 0.1

with some bias treatment (invasive1k or vasculars1k). As

expected, the number of models with residual SAC is inver-

sely proportional to the intensity of the SAC treatment

applied.

DISCUSSION

Our results show that species distribution maps derived from

presence-only records held in biodiversity databases or atlases

should be used with caution. Apparently, high scores in pre-

dictive power from species distributions can be obtained

from scarce, biased and autocorrelated presence records

using modern tools such as MaxEnt. However, our work

shows that these results can be misleading when confronted

with independent data at different scales. Other authors have

reached similar conclusions (Wisz et al., 2008). If the distri-

bution of a species was well-known at two different scales,

these should necessarily be coherent with one another. To

generate reliable fine-resolution distribution maps, these need

to be in accordance across scales (Niamir et al., 2011). For a

given species, its real distribution map at a fine scale should

match its real distribution map at a coarser scale once

upscaled. This seems not to be the case for some species,

indicating that either the modelled distributions at fine

resolution are wrong or that the known distributions at the

coarser scale are, in fact, incomplete (unlikely for a well-

surveyed region for vascular plants such as our study area).

Therefore, if one accepts this assumption, our results suggest

that distribution maps at the finer scales are not as good as

they appear to be. However, this could also be due to the

fact that our models have been built without explanatory

variables which can account for other environmental factors

and biotic interactions (e.g. interspecific competition), thus

not reflecting the realized niche of the species. Although at

macroecological scales climate is the main factor affecting

species distributions, biotic interactions may also play a role

(Araújo & Luoto, 2007; Heikkinen et al., 2007; Kissling et al.,

2010). Such variables, if available, could positively affect our

models and make them more in accordance with well-known

distributions at coarser scales. Unless this problem can be

solved, if these models are used for decision-making in con-

servation, they may not always accomplish the objectives for

which they are meant.

Of the 20 models that performed well at 1-km resolution,

only 12 were coherent with data at 10-km resolution. Spe-

cieswise, it might seem that good fine-scale predictive maps

could be derived from the biodiversity database for seven

species. However, fine-scale distribution maps were in accor-

dance with their coarser scale data for only four of them

(Table 3). We can thus consider the fine-resolution maps for

these four species to be sufficiently reliable for biodiversity

conservation. Coarse resolution data do not often match the

requirements of conservation planning (Araújo et al., 2005),

but, when these data are assumed to reflect the distribution

of the species at the coarse scale, they can be used to make a

cross-scale validation of modelled fine-scaled distribution

maps, even if high predictive scores had been obtained. The

resulting maps will be much more reliable and robust and

will help decision-makers to better meet their conservation

goals.

Table 4 1-km models with residual spatial autocorrelation and models finally accepted

Treatments

Bias

TotalNone invasive1k vasculars1k

n % a n % a n % a n % a

SAC None 0 9 90.0 1 9 90.0 0 10 100.0 0 28 93.3 1

Env. dist. 0.05 10 100.0 0 7 70.0 0 7 70.0 0 24 80.0 0

0.01 7 70.0 2 3 30.0 1 3 30.0 2 13 43.3 5

Sp. dist. 2830 m 9 90.0 1 8 80.0 0 5 50.0 2 22 73.3 3

4250 m 8 80.0 2 7 70.0 0 7 70.0 1 22 73.3 3

Total 43 86.0 6 34 68.0 1 32 64.0 5 109 72.7 12

This table offers a summary of the 109 models at 1-km resolution which were discarded because of residual spatial autocorrelation. Bias treat-

ments are shown in columns and spatial autocorrelation treatments (SAC) are shown in rows. For each treatment combination, three numbers

are shown: n is the number of discarded models, % is the percentage of discarded models, and a is the number of finally accepted models for the

rest of the models. Note that for n and%, the lower the number, the better the combination treatment performed with respect to residual spatial

autocorrelation.
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Atlas data commonly suffer from bias and autocorrelation

problems (Robertson et al., 2010). Treating both hindrances

is paramount to developing robust and reliable species distri-

bution models (Segurado et al., 2006; Merckx et al., 2011).

We tried several bias and autocorrelation correction scenar-

ios but did not find any particular pattern in our results that

can help in establishing protocols for distribution modelling.

Although the overall outcome of the modelling process can

only be known on a case-by-case basis, with respect only to

the correction of residual SAC, our results suggest that the

use of data filtering (either by setting minimum environmen-

tal or spatial distances) helps to remove residual SAC: the

larger the minimum distance, the better. Also, to a lesser

extent, bias treatments help to remove it. Except for Oxalis

pes-caprae, for which the environmental predictors used were

able to remove residual SAC without applying any treatment

to the occurrence data, the rest of the species needed some

sort of occurrence filtering to remove it. This suggests that,

for the other species in this study, some missing explanatory

variables (environmental or biotic), if available, may have

resulted in models with a better fit and no residual SAC

without having to discard occurrences to build it.

The lesson that can be learnt from this study is to be scep-

tical of fine-resolution maps obtained when modelling spe-

cies distributions from scarce and biased data, even though

they score high when measuring their predictive power.

Given that current modelling techniques and computer

power allow us to run many models per species taking into

account different scenarios of bias and autocorrelation cor-

rection treatments, it is always sensible to do so and check,

on a case-by-case basis, which one works best. Having a set

of independent data to validate the model seems indispens-

able. Cross-scale validation, when possible, is a good solution

to produce reliable and robust maps which can then be used

to make better conservation decisions.

CONCLUSIONS

Casual observations at fine resolution in biodiversity atlases

or databases have the potential to generate continuous spe-

cies distribution maps through species distribution model-

ling, providing powerful tools for conservation management

and planning. However, it may be impossible to obtain them

for many species because of scarcity and strong biases in the

data. Although high validation scores can be obtained when

modelling such data, there is a risk that the distribution

maps reflect the data distribution rather than the true species

distribution. Cross-scale validation of the data with species

distribution information at a coarser scale appears to be a

consistent protocol to test the validity and robustness of

fine-resolution models and thus to make them much more

reliable for decision-makers in conservation.

Fine-resolution maps can be derived from biodiversity

atlases with data scarcity, bias and autocorrelation. Bias, and

specially autocorrelation, treatments can help to remove

residual SAC in models. However, if no independent set of

data is available to further validate them, results should be

viewed with caution. When good coarser scale data are avail-

able, cross-scale validation appears to be effective in assessing

the robustness of the models. When these options are not

available, new field surveys may be the only option if reliable

fine-scale maps are needed.
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Araújo, M.B. & Pearson, R.G. (2005) Equilibrium of species’

distributions with climate. Ecography, 28, 693–695.
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Pyšek, P., Jarošı́k, V., Hulme, P.E. et al. (2010) Disentangling

the role of environmental and human pressures on biologi-

cal invasions across Europe. Proceedings of the National

Academy of Sciences USA, 107, 12157–12162.

Rebelo, H. & Jones, G. (2010) Ground validation of pres-

ence-only modelling with rare species: a case study on

barbastelles Barbastella barbastellus (Chiroptera: Vespertili-

onidae). Journal of Applied Ecology, 47, 410–420.

Richardson, D.M. & Whittaker, R.J. (2010) Conservation

biogeography – foundations, concepts and challenges.

Diversity and Distributions, 16, 313–320.

Robertson, M.P., Cumming, G.S. & Erasmus, B.F.N. (2010)

Getting the most out of atlas data. Diversity and Distribu-

tions, 16, 363–375.

Segurado, P., Araújo, M.B. & Kunin, W.E. (2006) Conse-

quences of spatial autocorrelation for niche-based models.

Journal of Applied Ecology, 43, 433–444.

Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. (2009).

ROCR: visualizing the performance of scoring classifiers.

R package version 1.0-4.

Suarez, A.V. & Tsutsui, N.D. (2004) The value of museum

collections for research and society. BioScience, 54, 66–74.

Swets, J. (1988) Measuring the accuracy of diagnostic sys-

tems. Science, 240, 1285–1293.

Taylor, B.W. & Irwin, R.E. (2004) Linking economic activi-

ties to the distribution of exotic plants. Proceedings of the

National Academy of Sciences USA, 101, 17725–17730.

Thorn, J.S., Nijman, V., Smith, D. & Nekaris, K.A.I. (2009)

Ecological niche modelling as a technique for assessing

threats and setting conservation priorities for Asian slow

lorises (Primates: Nycticebus). Diversity and Distributions,

15, 289–298.
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