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Abstract

It is reasonable to assume that there is a relationship between the spatial distribution of forest fuels and
fire hazards. Therefore, if fire risk is to be included into numerical forest planning, the spatial distribution
of risky and non-risky forest stands should be taken into account. The present study combines a stand-
level fire risk model and landscape level optimization to solve forest planning problems in which the fire
risk plays an important role. The key point of the method was to calculate forest level fire resistance
metrics from stand level indices and use these metrics as objective variables in numerical optimization.
This study shows that maximizing different landscape metrics produces very different landscape config-
urations with respect to the spatial arrangement of resistant and risky stands. The landscapes obtained by
maximizing different metrics were tested with a fire spread simulator. These tests suggested that the mean
fire resistance of the landscape, which is a non-spatial metric, is the most important factor affecting the
burned area. However, spatial landscape metrics that decrease the continuity of fire resistance in the
landscape can significantly improve the fire resistance of the landscape when used as additional objective
variables.

Introduction

In the countries of the Mediterranean basin, fire is
the main cause of forest damage. About 50,000
fires sweep through an average of 500,000 hectares
(1% of the forest area) of Mediterranean forest
each year, causing enormous economic and
ecological damage as well as loss of human life
(Vélez 2002). In the Catalonia region (Spain), with
an average of 12,000 hectares burned per year in
the 1990s, forest fires are perceived by the public as
the main environmental problem (Tábara 1996).
The reduction in risk does not necessarily mean
going back to total suppression policies (Finney

and Cohen 2003). Instead, the risk of fire should
be considered in ordinary silvicultural manage-
ment and forest planning to find out efficient
means to minimize fire damages cheaply.

Several authors have suggested fragmenting
high-risk forest landscapes by using fuel breaks
(Agee et al. 2000; Finney 2001; Hirsch et al. 2001;
Finney and Cohen 2003). A fuel break may be
created by thinning a strip of forest from below to
reduce the amount of fuel, increase the height to
crown base, and decrease crown closure. The fuel
break may be under-burned. This kind of fuel
break decreases the spread rate of fire and the
overall fire risk (Finney 2001). Fuel breaks may
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convert a crown fire into surface fire (Agee et al.
2000), although fire can re-enter the crowns as it
leaves the break (Loehle 2004). Loehle (2004)
suggested that cellular percolation models be used
to simulate fire-spreading patterns, providing in-
sights into fire behavior and fire control strategies
in general.

Since fire spreads in a specifically spatial man-
ner, variables that measure the relative arrange-
ment and connectivity of high/low risk forest
stands as well as their total area are a way to affect
the overall fire risk and safeness of a forest land-
scape. In this context, appropriate landscape
metrics can make a major contribution (e.g. Palahı́
et al. 2004). Landscape metrics are variables that
measure the sizes, shapes and connectivity of a
certain kind of forest patches (McGarigal and
Marks 1995). When dealing with the risk of fire,
the landscape metrics should include the amount
and location of forest stands that are fire sensitive
or fire resistant. A number of landscape metrics
can be formulated in order to influence the spatial
arrangement of forest stands in relation to fire risk.
Some landscape metrics require that the stands be
classified into different fire risk types or, as high-
and low-risk stands based on a threshold value.

Finding the optimal combination of stand
management alternatives to maximize or minimize
a landscape metric requires numerical optimiza-
tion techniques. As most landscape metrics are
spatial, the computational complexity of the
planning problem calls for the use of heuristic
search techniques (Borges et al. 2002; Pukkala
2002). These techniques are generally more flexible
and more capable of addressing complicated
objective functions and constraints than exact
algorithms are (Reeves 1993; Borges et al. 2002).

The aim of this study was to illustrate and
compare different landscape metrics in a planning
situation where one of the management objectives
was to reduce the risk of fire. González et al. (2005,
unpublished) developed a stand-level model of fire
risk applicable to forest management planning.
The model predictors are measured in routine
forest inventory or are easily calculated. The
model was used to predict a fire resistance index
for every management schedule of each stand. In
the second step, various landscape metrics, com-
puted from the fire resistance indices of stands,
were included in optimization problems that were
solved with heuristic methods. The resulting

landscapes were tested with a spatial fire simulator
that was developed for this purpose. All calcula-
tions except the fire simulations were done with a
Spanish forest-planning system called Monte
(Palahı́ 2002; Pukkala 2003), which was tailored
for the analyses of this study.

Material and methods

The case forests

The study was conducted in two different artificial
landscapes. Both represented forest conditions in
the province of Tarragona in Catalonia (north-east
Spain). The forest contained 900 square stands of
16 ha each distributed as a grid of 30 columns and
30 rows. The total area of the landscape was
14,400 ha. The artificial landscape was developed
using real forest inventory data from the second
Spanish National Forest Inventory (ICONA
1993). The adjacency information, which was
required in spatial optimization, was generated for
this setting. In the first forest (referred to as Tar-
ragona Random) data of 900 plots from the Na-
tional Forest Inventory in Tarragona were
assigned to the grid cells randomly, resulting in a
rather fragmented landscape. The mean growing
stock volume of Tarragona Random was
27 m3/ha. Pinus halepensis was the dominant tree
species, followed by P. nigra, Quercus ilex, P.
sylvestris and Q. faginea. The stand structures were
closer to uneven-aged than even-aged structures.

The second forest (referred to as Uniform for-
est) was created by assigning the same stand
characteristics to each of the 900 grid cells, thus
creating a completely homogenous forest land-
scape. The forest consisted of uneven-aged
P. halepensis 700 m a.s.l. with a volume of 48 m3/
ha and a rather high risk of fire.

Simulation of management alternatives

Alternative treatment schedules for the stands
were simulated for a 30-year planning period,
which was divided into three 10-year sub-periods.
Both even- and uneven- aged management sched-
ules were simulated. In the simulations of even-
aged management, the stand was low-thinned once
the stand basal area reached a ‘thinning limit’. The
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stand was regenerated with the shelter tree method
(Palahı́ and Pukkala 2003) when stand age ex-
ceeded the rotation age. To produce several alter-
native regimes for each stand, the rotation length
was multiplied by 0.7, 1.0 and 1.3. With each
rotation length, the basal area that activated the
thinning (thinning limit) was multiplied by 0.5, 1.0
and 1.5. This produced nine different even-aged
management instructions for the stand. In addi-
tion, nine different uneven-aged management
instructions were generated by combining three
cutting limits (basal area that activates the cutting)
with three cutting intensities.

The individual tree models for P. halepensis,
P. sylvestris and P. nigra developed by Trasobares
et al. (2004a, b) were used to simulate stand
development over the 30-year planning period.
Unpublished but structurally similar models
developed by Trasobares were used for the hard-
woods present in the forest landscapes.

Stand-level model of fire risk

The risk of fire in a forest stand was predicted
using the fire risk model developed by González et
al. (2005, unpublished) for Catalonian tree species
and stands:

FRI ¼ 1þexp ð�1:925�2:256 lnðmaxfEle�7; 1gÞfð
�0:015Dgþ 0:012G� 1:763Phard

þ2:081 SD

Dgþ 0:01

� �
gÞ�1

ð1Þ

where FRI (Fire Risk Index), is the 12-year
probability of the occurrence of fire in the stand.
Ele is computed from:

Ele ¼ lnðmaxfElevation � 7; 1gÞ ð2Þ

where Elevation is stand elevation above sea
level (in hundreds of meters). Dg is the basal-
area-weighted mean diameter (cm), G is the total
basal area (m2/ha), Phard is the proportion of
hardwood of the number of trees, and SD is
the standard deviation of diameters at breast
height (cm). The last predictor (SD/(Dg + 0.01))
expresses the variability of diameters in relation
to the basal-area-weighted mean diameter. In

stands with rather uneven structure the ratio is
close to 1 and tends to be 0 in homogeneous
stands. The model is based on all the inventory
plots measured in Catalonia (10,855 plots in to-
tal) in the second national forest inventory of
Spain, and 12-year post-inventory fire records for
the same region.

The predictors of the fire risk model can be di-
vided into three categories: variables describing
stand density and structure (G, Dg and the ratio
between SD and Dg), a variable describing the
species composition (Phard) and a variable describ-
ing the site (Ele). According to Equation (1), fire
occurrence is highest between elevations 0 m and
700 m. Beyond 700 m it declines rapidly, the decline
becoming more gradual at higher elevations. This
relationship is consistent with another study
(Schoenberg et al. 2003) and may be explained by
fuel moisture, temperature, precipitation and pop-
ulation density. Forest stands with high values of G
andSD/Dg have a high risk of fire, while standswith
high values of Phard and Dg have a low risk of fire.

The fire probability obtained from Equation (1)
was converted to a fire resistance index so that a
fire risk equal to or greater than 0.25 was consid-
ered to be equal to zero fire resistance (0.25 was the
highest predicted 12-year risk of all National
Forest Inventory plots of Catalonia) and a risk of
zero was equal to resistance one. The conversion
formula was as follows:

RES ¼ 4 0:25� FRIð Þ ð3Þ

where RES is the fire resistance index of the
stand. A threshold index was required for some
of the landscape metrics tested in the study. In
the absence of any true threshold value, a resis-
tance index of 0.5 was used as a technical
threshold. It corresponds to a 12-year fire prob-
ability of 0.125.

Landscape metrics

Six landscape metrics were analyzed as means of
affecting the spatial distribution of fire resistance
in the landscape: (1) Mean fire resistance; (2) Share
of good–good boundary; (3) Share of good–bad
boundary; (4) Mean difference; (5) Mean of
neighborhood minima and (6) Mean of neighbor-
hood maxima.

959



The mean fire resistance (MR) is the area-
weighted mean of the resistance indices of stands.
It is a non-spatial metric and gives reference for
analyzing the remaining metrics, which are spatial.

The share of good–good boundary (G–G) refers
to the configuration of low risk stands within the
landscape. Stand boundaries are bisected into two
groups, separating two similar or dissimilar stands,
according to a threshold value of 0.5 of RES.
Then, the proportion of good–good stand
boundary (RES>0.5 for both stands) of the total
boundary length is calculated. The idea for using
the share of good–good stand boundary is that
when such a metric is maximized, low-risk stands
tend to be connected, creating continuous breaks
in the landscape that can act as fuel breaks. A high
share of good–good boundary indicates a good
connectivity of low risk stands within the land-
scape, which can result in reduction of the risk and
the size of forest fires.

The share of good–bad stand boundary (G–B)
refers to the percentage of a boundary between
stands of high (RES>0.5) and low (RES £ 0.5)
fire resistance. The idea for using the share of
good–bad stand boundary is to disconnect fire-
risky stands, thereby increasing fragmentation
with respect to fire risk.

The mean difference (MD) measures the average
change in resistance at the compartment bound-
ary, giving the overall dissimilarity of neighboring
stands at the forest level. Maximizing the mean
difference creates a forest landscape of maximally
different neighbor stands with respect to their risk
of fire resulting in a fragmented landscape with
respect to fire risk. Compared to the G–B metric,
MD does not use any threshold value for fire
resistance.

The mean of neighborhood minima (MMin) is
calculated as follows. First, every stand recives the
lowest RES value of the stands in its neighborhood
(RESmin). The neighborhood includes the stand
itself and all other stands having common
boundary with it. Second, calculation of the mean
of the RESmin values of stands produces the
MMin metric. The rationale behind this metric is
that a risky stand (low resistance) makes all its
neighbors also risky. When the metric is maxi-
mized, fire-risky stands will be placed so that they
affect the other stands minimally. MMin reduces
the amount and dispersion of high-risk stands
(reducing potential ignition points).

The mean of neighborhood maxima (MMax) is
calculated by first giving to each stand the resis-
tance value of the most resistant stand of the
neighborhood (RESmax, the stand itself is in-
cluded in the neighborhood). Then the mean of the
RESmax values of all stands in the forest is cal-
culated. Maximizing the mean of neighborhood
maxima creates a forest landscape where as many
stands as possible will have at least one low-risk
neighbor. The reason for using the MMax metric
are the results obtained with percolation models
(Loehle 2004). Percolation models have shown
that treated stands (with low risk of fire), even if
they are not directly connected, can have a good
effect, acting as fuel breaks as well as protecting
themselves (Loehle 2004).

Planning problems

Three different planning problems were formu-
lated to test the landscape metrics in the two
artificial case forests. The first type had one of the
six landscape metrics as the sole objective variable.
In this case, the objective function was simply:

MaxU ¼ LMl2034 ð4Þ

where U is the total utility and LMl2034 is the value
of landscape metric l at the end of the planning
period (in 2034).

The second planning problem had two objective
variables: the volume of wood cut during the 30-
year planning period, and a landscape metric:

MaxU ¼ whuhðHÞ þ wlulðLMl2034Þ ð5Þ

where U is the total utility, wh and wl are, respec-
tively, the weights of the harvested volume (H) and
the landscape metric (LM), uh is the sub-utility
function for the total harvested volume, and ul is
the sub-utility function for landscape metric l. The
weight of the production objective (harvest) was
0.6 (wh) and the weight of the landscape metric was
0.4 (wl). The sub-utility functions transform the
absolute values of the variables measured in their
own units to a relative sub-utility value (see, e.g.,
Pukkala 2002). The sub-utility function for the
landscape metric was linear and determined
through the smallest and largest possible value of
the metric. The lowest possible value gave a sub-
utility of zero and the highest possible value gave a
sub-utility of one. The sub-utility function for
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harvest was determined by giving a priority of 1 to
the target value and a priority of 0 for the mini-
mum possible and maximum possible values. This
created an ascending–descending function with the
consequence that the cutting target was reached
almost exactly. In the Tarragona Random Forest,
the 30-year target cut was 500,000 m3 and in the
Uniform Forest 1000,000 m3.

The third planning problem also had two
objective variables: mean fire resistance in 2034
and a landscape metric at the end of the 30-year
period (2034):

MaxU ¼ wmumðMRÞ þ wlulðLMl2034Þ ð6Þ

where MR is the mean fire resistance in 2034, wm

and um are, respectively, the weight and sub-utility
function for the mean fire resistance. The target
value of mean resistance was the mid-point of the
range of variation, determined by the lowest possi-
ble and highest possiblemean fire resistance in 2034.
The target value was 0.544 for the Tarragona
Random forest and 0.314 for the Uniform forest. A
priority of 1 was given to the target value of mean
fire resistance and a priority of 0 to both the smallest
possible and the highest possible value. This ensured
that exactly the target value was obtained. The sub-
utility from the other landscape metric increased
linearly as a function of the value of the metric.

The optimization problems were solved using
the Hero (Pukkala and Kangas 1993) and tabu
search (Glover and Laguna 1993) heuristics with
one- or two-stand neighborhoods, depending on
which method worked best in a particular problem
(Heinonen and Pukkala 2004). In the Hero heu-
ristic, 45 random searches were used to produce
the initial solution. In tabu search the number of
iterations was 2700, and 50 candidate moves per
iteration were evaluated. The length of the tabu list
was 27, which means that the most recent move
was tabu for 27 iterations.

Evaluation of landscapes

A simple fire spread simulator was developed to
evaluate the landscapes produced by maximizing
different landscape metrics. In the simulation,
strokes of lightning (or other source of ignition) hit
random stands, which ignite fire with a probability
equal to the predicted fire risk of the stand
(Equation (1)). These stands are marked as

burning stands, and they may spread fire to
neighboring stands with the probability inversely
proportional to the neighbor’s resistance index
(Equation (3)). After this, a burning stand be-
comes a burned stand and no longer spreads fire.
The neighbors that catch fire may in turn spread
fire to their non-burned and non-burning neigh-
bors. The process stops when there are no burning
stands left in the forest.

All solutions were tested with the fire-spread
simulator. The simulation was done with one and
ten strokes of lightning (attempted ignitions), and
it was repeated 1000 times for every solution
and both numbers of strokes. The mean burned
area of 1000 simulations, expressed as the pro-
portion of the burned area obtained when the mean
resistance was the objective variable, was used to
describe the fire resistance of the landscape.

Results

Landscape metric as the sole objective

The first set of problems, in which a landscape
metric was the only objective variable, reveals the
manner in which the tested metrics modify the
landscape if the process is not hindered by other
management goals. The results show that the tes-
ted metrics produced different landscapes
(Table 1, Figure 1). The landscapes differed from
each other in various ways. For example, maxi-
mization of good–good boundary (G–G) or good–
bad boundary (G–B) in the Tarragona Random
forest resulted in landscapes that differed consid-
erably with respect to G–G and G–B but were
fairly similar with respect to the other landscape
metrics (Table 2). Comparison of the two forests
reveals that the influence of the landscape metrics
depends a lot on the initial landscape.

Maximizing the mean difference (MD) or the
mean of neighborhood minima (MMin) produced
landscapes that were very different in terms of
many landscape metrics. In general, G–G and
MMin as objective variables had rather similar
effects on the landscape (Table 1, Figure 1). Both
produced a smooth landscape with the fire-resis-
tant stands aggregated and connected to each
other, but the overall variation in resistance was
clearly smaller when MMin was maximized. G–B
and MD were also related objective variables and
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produced landscapes that look similar. The dif-
ference is that MD produced more variation in fire
resistance than G–B did. Maximizing MMax
produced landscapes different from all other
landscapes in many respects, but the landscape
was almost as highly fragmented as it was with the
G–B and MD goals.

The landscape metrics used different types of
cuttings to achieve the maximum value (Figure 2).

Low thinning decreases the stand-level fire risk
most, through the decrease in stand density and
vertical diversity (reduced ladder effect), but it is
also the most costly treatment (road-side price
minus harvesting cost per cubic meter is high).
Based on this rationale, G–B, MD and MMax
may be cheaper to maximize than the remaining
three metrics as they utilize less low thinning than
do the other metrics.

Figure 1. Value of fire resistance index in 2034 in Tarragona Random (a) and Uniform forest (b) when one of the landscape metrics

was maximized. Dark tones imply low resistance. The maximized landscape metric is: top left, MR; top right, G–G; middle left, G–B;

middle right, MD; bottom left, MMin; bottom right, MMax.

Table 1. Values of landscape metrics in 2034 in the optimal plans for Tarragona Random and Uniform forest when one of the

landscape metrics was the only objective variable.

Variable Objective variable

MR G–G G–B MD MMin MMax

Tarragona Random

MR 0.639 0.586 0.530 0.524 0.621 0.550

G–G 60 62 18 18 61 24

G–B 34 32 67 65 32 52

MD 0.192 0.214 0.280 0.362 0.167 0.293

MMin 0.463 0.372 0.286 0.228 0.472 0.282

MMax 0.850 0.810 0.802 0.851 0.813 0.861

Uniform forest

MR 0.510 0.510 0.351 0.313 0.510 0.302

G–G 100 100 0 1 100 8

G–B 0 0 100 94 0 49

MD 0.000 0.000 0.319 0.369 0.000 0.183

MMin 0.510 0.510 0.161 0.119 0.510 0.143

MMax 0.510 0.510 0.510 0.510 0.510 0.510
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The average area that was burned in the fire
simulations for the final landscape (year 2034)
correlated closely with the mean resistance (Fig-
ure 3, Table 1). The burned area was very sensitive
to the mean resistance. The results indicated that
the spatial structure of landscape, in terms of fire
resistance, is of secondary importance compared
to the overall level of the resistance.

Landscape metrics with equal harvest

A more relevant problem setting for forestry
practice is the second one in which a landscape

metric was maximized with a certain cutting target.
Results of these optimizations reveal how land-
scape metrics work if the forest also has production
objectives. Equal cutting did not alter the overall
picture of the behavior of the landscape metrics
much. G–B and MD resembled each other (Ta-
ble 2), butMD produced somewhat more variation
in fire resistance than G–B did (Figure 4). G–G and
MMin also had similar effects, but G–G produced
more variation and MMin a smoother landscape.
In many respects, MMax was between pairs
(G–B)–MD and (G–G)–MMin. It produced a
landscape in which there were corridors of both
fire-risky stands and fire-resistant stands.

Table 2. Values of landscape metrics in 2034 in the optimal plans for the Tarragona Random and Uniform forest when one of the

landscape metrics was maximized with a 30-year cutting target of 500,000 m3 (Tarragona Random) and 1000,000 m3 (Uniform forest).

Variable Objective variable

MR G–G G–B MD MMin MMax

Tarragona Random

MR 0.601 0.571 0.514 0.510 0.588 0.521

G–G 47 61 17 16 43 52

G–B 42 33 67 60 40 47

MD 0.206 0.222 0.294 0.341 0.178 0.305

MMin 0.406 0.342 0.260 0.224 0.433 0.247

MMax 0.824 0.804 0.798 0.837 0.797 0.850

Uniform forest

MR 0.458 0.465 0.353 0.305 0.460 0.292

G–G 58 73 4 1 68 6

G–B 36 13 87 69 18 49

MD 0.020 0.030 0.271 0.275 0.009 0.189

MMin 0.339 0.419 0.166 0.137 0.420 0.139

MMax 0.510 0.496 0.510 0.492 0.502 0.508

Figure 2. Areas of different types of cuttings in Tarragona Random (a) and Uniform forest (b) when one of the landscape metrics was

maximized.
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All landscape metrics employed very few final
fellings because new regeneration increases the fire
risk of a stand (Figure 5). If the cost is measured
with the area of low thinning, MD was the
cheapest metric to be maximized in the Tarragona
Random Forest and MMax in the Uniform For-
est. MR, G–G and MMin employed twice as much
low thinning as G–B, MD and MMax.

Those landscape metrics that produced the
highest mean resistance had the smallest burned
area in the fire simulations (Figure 6, Table 2). In
this respect, the results were similar as in the first
problem, but because all solutions now had the

same total harvest, the relative differences in
burned area were smaller.

Landscape metrics with equal mean fire resistance

The last set of optimizations shows the spatial
effects of landscape metrics when variation in the
overall resistance level is eliminated. The mean fire
resistance of the landscape in 2034 was forced to
be the same in all solutions for a forest landscape.
In the optimizations for MR the spatial configu-
ration of the landscape is largely random; many

Figure 4. Value of fire resistance index in 2034 in Tarragona Random (a) and Uniform forest (b) when one of the landscape metrics

was maximized with a cutting target of 500,000 m3 (Tarragona Random) or 1000,000 m3 (Uniform forest). Dark tones imply low

resistance. The maximized landscape metric is: top left, MR; top right, G–G; middle left, G–B; middle right, MD; bottom left, MMin;

bottom right, MMax.

Figure 3. Relative burned areas in fire simulations with 1 and 10 strokes of lightning (attempted ignitions) in Tarragona Random (a)

and Uniform forest (b) when one of the landscape metrics was maximized. The burned area when the mean resistance (MR) was

maximized is set equal to one.
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different spatial distributions had produced the
same MR.

These optimizations also support earlier con-
clusions about the similarity and dissimilarity of
the effects of landscape metrics (Table 3). How-
ever, G–B and MMin now had more different ef-
fects on the landscape than in previous problems:
G–G produced and aggregated stands with fire
resistance just above 0.5, and the remaining stands
were very fire risky (Figure 7). When MMin was
maximized, there were fewer low-resistance stands
and they were as far as possible from the resistant
stands. G–B and MD had rather similar impacts
on the landscape, and MMax differed from all
other metrics.

In the Uniform Forest, none of the landscape
metrics used final felling (Figure 8). In Tarragona

Random, several of the metrics were rather similar
in terms of the areas of cuttings (Figure 8a), but
the resulting landscapes differed substantially
(Figure 7a). In the Uniform Forest, the cutting
strategies employed by different metrics were
drastically different. For example, MMin used
much selection felling and few low thinning, while
G–G, G–B and MD used more low thinning than
selection felling. With all landscape metrics the
low-thinning areas were fairly similar, suggesting
that when the primary management objective is to
achieve a certain mean fire resistance, there may
not be large differences in the costs of maximizing
different spatial landscape metrics as a secondary
objective.

Some of the landscape metrics now produced
burned areas clearly smaller than obtained with a

Figure 5. Areas of different types of cuttings in Tarragona Random (a) and Uniform forest (b) when one of the landscape metrics was

maximized with a cutting target of 500,000 m3 (Tarragona Random) or 1000, 000 m3 (Uniform forest).

Figure 6. Relative burned areas in fire simulations with 1 and 10 strokes of lightning (attempted ignitions) in Tarragona Random (a)

and Uniform forest (b) when one of the landscape metrics was maximized with a cutting target of 500,000 m3 (Tarragona Random) or

1000, 000 m3 (Uniform forest).
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fixed target resistance but without a spatial goal
(Figure 9). In Tarragona Random, those land-
scape metrics that most increased fragmentation
and created discontinuities at compartment
boundaries, namely G–B, MD, and MMax,
produced landscapes in which the simulated
burned area was up to 40% lower than without the
spatial goal. The differences are statistically sig-
nificant (except MR vs. MMax with 10 strokes),
because the 95% confidence limits, calculated from
1000 simulations for G–B, MD and MMax, did

not overlap with the confidence limits of MR. The
relative differences were greater with 1-stroke
simulations, which is logical as simulations with
several strokes create ignition points in different
parts of the landscape, decreasing the effect of fuel
breaks and the spatial structure of the landscape.

Discussion

The stand level offers the first meaningful level for
evaluating the fire risk of a forest. Stand-level

Table 3. Values of landscape metrics in 2034 in the optimal plans for the Tarragona Random and Uniform forest when one of the

landscape metrics was maximized with a mean fire resistance (MR) target in 2034 of 0.544 (Tarragona Random) or 0.314 (Uniform

forest).

Variable Objective variable

MR G–G G–B MD MMin MMax

Tarragona Random

G–G 60 61 19 23 21 22

G–B 32 31 66 62 41 51

MD 0.226 0.223 0.272 0.347 0.179 0.289

MMin 0.313 0.315 0.307 0.242 0.405 0.281

MMax 0.786 0.784 0.812 0.853 0.771 0.859

Uniform forest

G–G 18 41 3 4 21 12

G–B 25 8 89 87 10 51

MD 0.110 0.053 0.336 0.342 0.033 0.189

MMin 0.195 0.259 0.125 0.120 0.286 0.143

MMax 0.427 0.387 0.510 0.510 0.357 0.510

Figure 7. Value of fire resistance index in 2034 in Tarragona Random (a) and Uniform forest (b) when one of the landscape metrics

was maximized with a mean resistance target of 0.544 (Tarragona Random) or 0.314 (Uniform forest) in 2034. Dark tones imply low

resistance. The maximized landscape metric is: top left, MR; top right, G–G; middle left, G–B; middle right, MD; bottom left, MMin;

bottom right, MMax.
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models of fire risk, like the one developed by
González et al. (2005, unpublished), predict the
effect of stand structure and silvicultural opera-
tions on the degree of fire risk in a stand. Com-
binatorial techniques of optimization can be used
to affect the composition and structure of the
entire landscape with respect to fire risk. Treating
all stands for minimizing fire risk might be too
costly and not feasible. As fire spreads in a spatial
manner (Loehle 2004), the spatial layout of both
low-risk stands (fuel breaks) and high-risk stands
is significant. Landscape metrics measuring the
relative arrangement and connectivity of different

types of forest stands with respect to fire risk, can
play a major role in integrating fire risk consider-
ations in forest planning and in addressing the
problem at the landscape level.

The approach developed in this study simplifies
the reality in a few respects. The model used to
predict stand-level fire resistance used elevation as
the only predictor in addition to growing stock
characteristics. Elevation correlates with fuel
moisture, temperature, rainfall and population
density, which means that, to some extent, the
model describes the influence of meteorological
and anthropogenic factors on the risk of fire.

Figure 8. Areas of different types of cuttings in Tarragona Random (a) and Uniform forest (b) when one of the landscape metrics was

maximized with a mean resistance target of 0.544 (Tarragona Random) or 0.314 (Uniform forest) in 2034.

Figure 9. Relative burned areas in fire simulations with 1 and 10 strokes of lightning (attempted ignitions) in Tarragona Random (a)

and Uniform forest (b) when one of the landscape metrics was maximized with a mean resistance target of 0.544 (Tarragona Random)

or 0.314 (Uniform forest) in 2034.
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However, the model ignores slope and aspect
because they were no statistically significant pre-
dictors of the stand-level probability of fire.

The landscape metrics used to affect the spatial
distribution of fire resistance may not be the best
possible. If it is important to place the fuel breaks
in some critical places (Finney and Cohen 2003), it
might be worthwhile to use a location-weighted
mean resistance as the objective variable. If the
main wind direction or the aspect of the slope is of
importance, it is possible to use difference in ele-
vation or the direction of the neighbor as a weight
when calculating the MD, G–G or G–B the sta-
tistics. This would enhance the formation of fuel
breaks that are perpendicular to the main wind
direction (Finney 2001) of parallel to contour
lines.

Also the fire-spread simulator that was used to
compare the landscape metrics was a simplification
as it ignored important factors such as wind,
topography and weather conditions (fuel mois-
ture). However, all these factors could be easily
incorporated in the simulator by making the
probability of spreading dependent on the direc-
tional distribution of wind, slope, aspect, etc.
Varying weather conditions could be mimicked
with stochastic multipliers for ignition probability
and the probability of fire to spread to neighbor
stands. However, since the purpose of the fire
simulations was to compare the relative merits of
different landscapes rather than to predict exact
burned areas, these refinements were considered
unnecessary.

This study showed that a forest landscape can
be configured in very different ways with the help
of landscape metrics, even when the harvest level
or the mean fire-resistance is fixed. According to
the results obtained, maximizing the mean of
neighborhood minima (MMin) produced the
smoothest and least fragmented landscape with
respect to fore resistance. Since many stand fea-
tures are strongly correlated, the landscape is
most probably non-fragmented also in other
respects such as habitat quality of flora and
fauna, opposite to, G–B, MD and MMax, for
instance, which will probably lead to severe
habitat fragmentation.

Maximizing the MD metric produced the most
differences at stand boundary, meaning that fire
resistance changes maximally when one moves
in the forest and crosses stand boundaries.

Maximizing MMax produced corridors of non-
risky stands, i.e. continuous fuel breaks, but also
corridors of risky stands, i.e. pathways for fire.
The G–G metric tended to join resistant stands
and, as a result, disconnect risky areas, which
should be a good feature for fire management.
However, the difference in fire risk between fuel-
break and non-break areas may be small since the
bisection of stands into good and bad areas is
based on a single threshold.

Of the six landscape metrics tested, G–B and
MD differ from the other metrics so that both low-
and high-risk stands are required to maximize the
metric, whereas for high MR, G–G, MMin and
MMax only low-risk fire resistant stands are nee-
ded. For a high MMax, it is enough that every
stand has one resistant neighbor, and the resis-
tance value of most stands is irrelevant. This dif-
ference between groups of metrics is clearly visible
in Table 1 and Figure 2b, which show that indices
to which risky stands do not contribute or which
are not indifferent to a certain percentage of risky
stands produce the highest mean resistance
(Table 2) and employ much risk-reducing silvi-
cultural operations (Figure 2b). Taking these facts
into account, it is logical to use MR, G–G or
MMin if only one fire-related objective variable
can be included in the optimization problem, and
management cost is not important. However, it is
quite evident that a combination of two or more
metrics produces a better landscape than a single
metric alone. The results suggest that the mean fire
resistance should always be an objective variable,
but the use of one or several additional metrics
may further improve the solution. Maximizing for
instance good–good boundary (G–G) and simul-
taneously minimizing good–bad boundary (G–B)
as an additional objective should produce a land-
scape with connected fuel breaks and few ignition
areas.

Those indices that fragment the landscape most
apparently are the cheapest to maximize. In the
problem formulations of this study, however, the
management cost was not actually minimized, but
was calculated afterwards for solutions that aimed
at other objectives. The cost was not measured in
terms on monetary expenses but with the total area
of low thinning. Therefore the conclusions about
cost effectiveness of different metrics are pre-
liminary. A thorough economic analysis of the
fire-management alternatives should also take into
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account the effect of fire risk on the expected in-
come from timber sales.

The fire simulations suggest that the spatial
layout of the landscape is of small importance
compared to the overall level of fire resistance
(Keeley and Fotheringham 2001). However, the
conclusion will change if the results are viewed
from a different perspective and it is analyzed how
good a landscape metric is with a given mean
resistance. Figure 10 was compiled from the opti-
mization results to illustrate this perspective. It
shows that in Tarragona Random, MD, G–B, and
MMax result in burned areas clearly smaller than
obtained with the same mean resistance but with-
out spatial goals (Figure 10a). The benefit of using
spatial goals decreases when the number of igni-
tion points increases (Figure 10b), which is logical.

In Tarragona Random, those metrics that pro-
duced the smoothest landscape (G–G and MMin)
with a fixed mean resistance, were the worst in fire
simulations (Figure 9a). This and the good per-
formance of G–B and MD metrics suggest that
increasing fuel fragmentation is good for fire
management (Minnich 2001). However, an oppo-
site result was obtained for the Uniform forest,
where G–G and MMin gave the smallest burned
area when the mean resistance was fixed
(Figure 9b). The difference can be explained by the
differences between the two forests; in the Uniform
forest the highest possible resistance in 2034 was
0.510, which is a rather low value and only slightly
higher than the threshold bisecting good and bad
stands. This means that the fuel breaks created by

the landscape metrics (e.g. corridors of good–good
stands) were not very efficient in the Uniform
forest with a consequence that wider low risk
areas, i.e. a smoother landscape, is required to
extinguish fire.

The fire simulations also indicate that the fire
resistance of a ‘break area’ must be high to make it
efficient. Also the rather poor performance of the
G–G metric suggests that the threshold that makes
a stand good (fire resistant) should be clearly
higher than 0.5, which was used in this study.
Resistant enough areas may not be obtained with
ordinary silvicultural treatments in all forests. An
example is our Uniform forest, which consisted of
a single fire-prone species of small average tree
size. Most probably the results for this forest had
been better if special fire-management treatments
had been simulated for the stands, like clear-cut-
ting without planting, very heavy low thinning,
and planting of hardwood. With these kinds of
additional treatment options for stands, the opti-
mization would most probably have been able to
generate more fire-resistance landscapes than
found in this study. However, as such special
treatments may be costly, it is important to include
the cost or production loss in the optimization to
find low-risk but cheap solutions.

Conclusions

The study showed that if individual stands can be
managed in several alternative ways with respect

Figure 10. The mean burned area in Tarragona Random in fire simulations with 1 (a) and 10 (b) strokes of lightning (attempted

ignitions) when one of the landscape metrics was maximized either alone or together with another objective variable (harvested volume

of mean resistance). The symbol indicates the landscape metric that was maximized. Solutions obtained without spatial landscape

metrics are connected with lines (the mean resistance has been the only fire-related objective variable).
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to fire resistance, the use of spatial objective vari-
ables in numerical forest level optimization can
have a great influence on the spatial distribution of
fire resistance within the landscape. However, very
different spatial structures may be equally good in
terms of burned area. The burned area correlates
closely with the mean fire resistance of stands,
which is a non-spatial characteristic. However, the
spatial distribution of fire resistance has a signifi-
cant secondary effect; fragmentation of fire resis-
tance decreases the total burned area if the mean
resistance remains constant.
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